Design of 8-bit Ripple Carry Adder Using Constant Delay Logic
نویسندگان
چکیده
This paper new design a Proposed Logic design targeting at full-custom high speed applications. The constant delay characteristic of this logic style regardless of the logic expression makes it suitable in implementing complicated logic expression such as addition. This feature enables performance advantage over static and dynamic, CD logic styles in a single cycle, multi-stage circuit block. Several design considerations including appropriate timing window width adjustment to reduce power consumption and maintain sufficient noise margin to ensure robust operations are discussed and analyzed. Using 50nm general purpose CMOS technology, the proposed logic style high performance compare to Static, dynamic & CD logic respectively. Post layout simulation results of 8-bit ripple carry adders conclude that Proposed logic faster than the compare to CD-based design Dynamic ,static based adders respectively. For ultra-high speed applications. This circuits design DSCH Tool, Microwind Tool.
منابع مشابه
A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube FET technology for use in arithmetic units
In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...
متن کاملDesign and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology
The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...
متن کاملDesigning of Ripple Carry Adder Using Domino Logic
This paper new design a Proposed Logic design targeting at full-custom high speed applications. The constant delay characteristic of this logic style regardless of the logic expression makes it suitable in implementing complicated logic expression such as addition. This feature enables performance advantage over static and dynamic, CD logic styles in a single cycle, multi-stage circuit block. S...
متن کاملDesign of Low Power High Speed Hybrid Full Adder
In this paper, a proposed 1-bit hybrid full adder design employing both transmission gate logic and complementary metal– oxide–semiconductor (CMOS) logic is reported. The design is implemented for 1-bit Ripple Carry Adder and then is extended for 64-bit Ripple Carry Adder. The circuit is implemented using Mentor Graphics tools 130nm technology. The performance parameters such as delay, area, to...
متن کاملDesign of 16-bit Carry Save Adder using Constant Delay Logic Style
Addition is one of the vital parts of any electronic system design because every electronic system needs this basic operation. Researchers have done a lot of work on various adders to optimise their performance. So, they found that Carry Save adder is best in terms of delay calculation and power consumption. That is why this proposed work use this adder. This paper is primarily focus on design ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014